Congestion Avoidance Using Adaptive Random Marking

Marissa Borrego, NaLi, Gustavo de Veciana, San-qi Li
Department of Electrical and Computer Engineering
University of Texasat Austin
Austin, Texas
(marissa, gustavo, sangi) @ece.utexas.edu
linali @santera.com

Abstract— Recent work on congestion control in TCP/IP networks combines im-
proved end-user transmission mechanisms with active queue management schemes.
In this paper we propose MARS, an adaptive early packet marking active queue man-
agement mechanism. Unlike previous proposals, MARS adapts the marking proba-
bility to drive the average queue length towards a target size. By doing so, MARS
implicitly reacts to changes in the network dynamics without requiring per-flow state
or estimates thereof. Our simulations confirm MARS’s flexibility and effectiveness in
reducing packet loss, controlling queuing delay, and improving utilization and flow
goodput.

Keywords—RED, TCP, congestion control, active queue management

I. INTRODUCTION

The success of the Internet is in part due to its simple connectionless
architecture. However, its stability relies on proper flow and congestion
control mechanisms. These mechanisms, such as those found in TCP,
play a critical role in reducing packet losses and avoiding congestion
collapse [8]. The basic congestion control principle underlying TCP is
for aflow to increase its transmission rate until it observes packet loss or
high delays. It then aggressively backs-off to alleviate possible conges-
tion [1]. In this manner, TCP attempts to gauge bandwidth availability
and avoid network instability without requiring implicit feedback from
the network.

While the flow and congestion control mechanisms of TCP and its
variants have been successful, there is increased recognition for the
need to improve upon them [15]. In particular, more proactive steps
are needed to not only recover from periods of congestion but to at-
tempt to avoid congestion and further improve network utilization [9].
This has prompted the IETF to recommend use of both active queue
management within network routers [2] in conjunction with enhancing
TCP flows using Explicit Congestion Notification (ECN) [16].

ECN allows for explicit congestion notification using packet mark-
ing instead of packet loss. Active queue management attempts to im-
prove performance by monitoring the network router queues. Its goals
include avoiding congestion, reducing packet loss, improving utiliza-
tion and controlling queuing delay. Several schemes have been pro-
posed based on probabilistic packet dropping/marking including Ran-
dom Early Detection (RED) [6], Stabilized-RED (SRED) [13], Flow-
Proportional Queuing (FPQ) [12], and BLUE [3].

This paper presents MARS, Marking based on an Adaptive Ran-
dom Scheme. Unlike previous active queue management mechanisms,
MARS intends to control the aggregate sending rate by bring the av-
erage queue length to a target size. It adapts the marking probabil-
ity by observing queue deviations from the target. This allows MARS
to implicitly gauge the sensitivity of user transmissions to the random
marking, without requiring per-flow state, or estimates thereof.

MARS only requires the configuration of a few simple parameters
and, unlike other schemes, its performance is highly insensitive to their
specific values. Its overhead is small, based on simple periodic up-
dates. The simulation results demonstrate MARS effectively stabilizes
the queue performance, increases throughput, reduces loss, and con-
trols queuing delays. It outperforms both RED and SCRED and results
in more consistent behavior. Overall, MARS provides a flexible and ef-
fective counterpart to the end system congestion control mechanisms.

The paper is organized as follows: §l1 describes the MARS adapta-

tion algorithm and discusses several design and implementation consid-
erations. The simulation results and comparisons to RED and SCRED
are found in §l11. §1V describes related works. Finally, §V concludes
the paper and discusses future work. For simplicity, the remainder of
the paper discusses packet marking and assumes support for ECN. We
also assume the reader is familiar with TCP and ECN congestion con-
trol mechanisms [1], [16], as well as RED and its variants [6], [4].

IlI. MARS ADAPTATION

This section describes MARS, an adaptive random packet marking
scheme. We begin by motivating our approach, then present the adap-
tation algorithm followed by various design and implementation con-
siderations. The goal for MARS is to achieve full utilization of the
bottleneck link while avoiding packet loss and controlling queuing de-
lay. It adapts the marking probability p(t) at time ¢ to drive the average
queue length towards a given target ¢*. The key advantage of using
a random marking scheme is simplicity. It is based on the notion of
“fairly” distributing congestion indications among an unknown set of
ongoing transmissions, while avoiding flow synchronization, and with-
out requiring routers to keep per flow state.

However, using a random marking scheme, in conjunction with an
end-user mechanism such as TCP/ECN, results in unpredictability®.
This, in conjunction with other dynamic factors such as number of
flows, multiple bottlenecks, network delays, traffic burstiness, and ca-
pacity changes, results in unavoidable queue fluctuations.

It is reasonable to model the queue length as a random process whose
characteristics depend on the marking probability. Thus, while it makes
no sense to consider driving the instantaneous random queue length to
the target, one can nevertheless consider adapting the marking proba-
bility so that the queue fluctuations occur about the target ¢*. As we
have found, this is in fact a highly effective approach for managing
the queue in order to control the fluctuations to avoid queue underflow
and overflow. Based on this idea, MARS is able to improve utilization,
reduce packet loss, and control queuing delay.

A. MARSAlgorithm

The goal for MARS s to bring the average queue to a target value,
q*. This is accomplished by periodically adapting the packet marking
probability p(t) based on the deviation of the instantaneous queue g(t)
from the target ¢*. The rationale for selecting the instantaneous queue
is discussed in §11-D. The algorithm is based on the following common-
sense guidelines:

1. if g(t) > q* increase p(t); if q(t) < g%, decrease p(t);

2. update p(t) in a manner such that “small” (normal)
deviations between ¢(¢) and ¢* are inconsequential
while “larger” deviations lead to aggressive updates.

The rationale for the first point should be obvious from the observa-
tion that the arrival rate, and thus queue length, will decrease with an
increase in packet marking probability and vice versa. The second point
follows from the observation that normal queue fluctuations will occur

L The effect of a marked packet depends upon the user’s transmission “rate”. Marking a packet of a user
with a very large rate will have a greater impact than that of a user with a small rate.



L€
Smax

o Xmax x

Fig. 1. DeltaUpdate Function - f(x)

due to dynamic nature of the network. Thus, small queue deviations
from the target value should be tolerated. However, larger deviations
should lead to the proper adaptation of p(n). The larger the deviation
the more aggressive the change.

MARS adapts the packet marking probability p(t) periodically using
the following equations. Selection of an update period is discussed in
§11-D:

p(t) = p(t—1)+Ap(t), @
Ap(t) = s(t)x fla(t) —d"), @
s(t) = maxp(t—1),4] 3

where the function f(z) determines the magnitude of the update and is
asymmetric, increasing, and convex on the positive orthant. The func-
tion s(t) scales the update to the proper range, with the minimum scal-
ing value § > 0. This choice for s(t), as discussed in §11-B, can achieve
better “stability” for the mechanism around equilibrium.

We have considered various candidate functions f(x) and found that
the proposed mechanism is quite robust to this choice. For convenience
we use the following function, shown in Fig.1:

f@) = axsgn(z)x (" -1) @)
where a, b > 0 are constants. The selection of a and b determing 6,4z .
The value for é,,,4. has practical implications and is discussed in §11-D.
This function satisfies our requirements. When the deviation |g(t) —
q*| is small, the update Ap(t) will be relatively small. Yet, a large
deviation from ¢* will lead to an exponentially larger update. This
helps MARS react aggressively to significant change while tolerating
normal queue fluctuations.

MARS is simple to implement. The computing overhead is small
since the adaptation is performed periodically. At each update interval,
only a few simple operations are required. f(t) can be quantized, pre-
computed and stored in table format, and thus only entails a table look-
up at run-time. Next, in §11-B we discuss the proposed scaling factor
for the update, followed by an additional improvement to render the
mechanism robust to the influence of packet losses due to overflow, in
§11-C.

B. On the update scaling factor s(t)

In this section we assume the packet marking probabilities are small,
i.e., the average time between marks is large relative to the flow round
trip times. We further assume that in this regime the dynamics of TCP
with and without support for ECN are similar. Consider the basic model
relating the average throughput r; of an active TCP/ECN flow %, sharing
a router buffer with a small packet dropping/marking probability p, see
[11]:

«
" /B X RTT; ©)

pkt loss

a<qg*

Fig. 2. Packet Loss State Machine

where « is a constant and RTT; denotes its round trip time. Taking the
derivative one can show that

dr,-:—lxmxd—. (6)
2 p

Furthermore, letting = denote the sum of the average throughput of
flows sharing the buffer, then based on Eq.(6) one can assess the sen-
sitivity of the overall average throughput to a change in the marking
probability:

dr:—lxrxd—p. 7)
2 p
Rearranging to express in terms of dp:
dp:—ZXpX%. (8)

Now suppose the MARS mechanism has roughly converged, mean-
ing that the average queue length is on target, the aggregate arrival rate
is approximately equal to the link capacity ¢ and the marking probabil-
ity is stable:

p(t) Rp 7Q(t) _q* ~ 07 r=ec.

Further suppose there is a small exogenous positive disturbance to
the arrival rate Ar. Based on Eq.(8), in order to keep the arrival rate
(Ar — dr = 0) and queue on target, the marking probability should
be increased to reduce the arrivals from TCP connections by Ar. The
corresponding change Ap to p is roughly

Ap:2xp><£o<prr. 9)
c

Assuming the queue is not idle, the disturbance in arrival rate translates
to a proportional deviation from the target, Aq o< Ar. By linearizing
Eq.(2) for small queue distrubances, we see that this deviation results
in a marking probability update given by

Ap =~ abxpx Aq x px Ar.

Thus, by introducing the scaling factor s(t) in Eq.(2) one ensures an
update scales as suggested by Eq.(9). Intuitively, when the nominal
value of p is small, a few users share the link capacity, and a small
change in p, i.e. Ap, may result in a big change in throughput. In
this regime updates should be made cautiously, i.e. scaled by the small
value of p. Note that if the scaling factor did not include the maximum
with & then the marking probability would remain at 0 if ever p(t—1) =
0. The proposed scaling factor precludes this pathology.

C. Controlling impact of packet loss

The issue of accounting for the influence of packet loss due to queue
overflow is discussed in this section. Queue overflow can occur when
the marking probability is too low given the current network dynamics,
e.g., due to a drastic increase in number of active flows. With MARS,



am

packet loss

S0 i s1 i s2 i so

o ” time

Fig. 3. State Transition Queue Behavior

the updates are based on the assumption that on average changes in the
queue reflect previous adaptations of p(t).

With overflows, however, a dramatic decrease in queue size is prob-
ably the result of the packet losses and not of the marking probability.
In all likelihood, p(t) is indeed too low. However, under these circum-
stances MARS may incorrectly decrease p(n) when the queue drops
below ¢*. This can lead to subsequent queue overflow, new losses and
recurrent underflow. During such oscillations MARS may fail to set
the marking probability to a stable value. In order to control this ef-
fect, we propose a state machine shown in Fig.2. The idea is to reduce
the impact of the changes in the queue triggered by packet loss on the
adaptation of p(¢).

Referring to Fig.2, SO is the state of normal operation, wherein up-
dates are based on Eq.(2). Upon detecting packet losses the system
transits to state S1. It continues updating p(¢) in the normal fashion
until the queue decreases below the target ¢*, at which point the system
transits to S2. In S2 the update equation is modified to Ap(t) = —4.
The system returns to state SO from S2 once the queue length exceeds
q*. Fig.3 depicts the corresponding state transitions.

Using state S2 to control the decrease of p(t) serves to dampen the
effect of the reduction in queue size caused by packet loss. By de-
creasing p(t) we insure the transition back to SO, even in the unlikely
event that a large number of flows suddenly depart. The simulation re-
sults confirm the effectiveness of this simple mechanism in controlling
the impact of queue overflow and eliminating oscillation. In general,
packet loss oscillations are an important consideration for other adap-
tive marking schemes. Our results and those in [3] demonstrate that
both SCRED and BLUE are susceptible to this type of oscillation.

D. Additional design considerations

This section presents several important design and implementation
choices. First, use of the instantaneous queue and p averaging are ad-
dressed. Next, selection of the update interval is considered. Finally,
we discuss the ratio of the minimum to maximum update size.

As previously mentioned, MARS must deal with normal queue fluc-
tuations. One obvious choice for filtering the noise is to use the average
queue g(t). The problem with using g(t) with the proposed adaptation
is that g(t) is unable to reflect the impact of changes caused by control
decisions in a timely manner. This may lead control in the wrong di-
rection. For example, by increasing the marking probability, the queue
size starts to drop below the target, but the average queue size is still
above the target. This causes further updates in the wrong direction. As
our experiments confirmed, waiting for the average queue to properly
reflect the current state reduces the algorithm’s ability to properly react
and significantly compromises its performance.

Instead, MARS uses two mechanisms to help filter the impact of
normal queue fluctuations from the control. First, as previously men-
tions, the delta function f(¢) is designed to be less sensitive to change
close to the target. Second, averaging p(n) over a short time interval,
rather than g(n), further reduces the noise without compromising per-

dst
n8 1-10
100/,

d00/ no

N6 00/10 1106 41-50

©o/1 \
10/5 100/15 ni1i 61-70

na__45/S ns

100/5 100/ niz 11-20
100/5
ey ——1O0/S nas

src

1-20 no 21-30

21-40 N1
100/5

100710

\/

a1-60 nz

100715 31-40

\L%
nia si-60
100/18
n1is 71-s80

Fig. 4. Topology: 2 Bottleneck Links, RTT from 24ms-80ms

61-80 N3

formance. These two mechanisms lead to a highly effect solution for
reducing the impact of normal queue fluctuations.

Next, we discuss setting the update interval. Recall MARS period-
ically updates the marking probability using Eq.(2). The effect of an
update impacts the queue sometime in the future, on the order of the
flow RTTs. Therefore, it is reasonable to set the update interval in this
range. Updating much more frequently does not allow the algorithm to
accurately sense the impact of previous change(s). Conversely, updat-
ing much slower effects convergence. Our simulations indicate MARS
is fairly insensitive to the specific update interval value, as long as it is
in a reasonable range. Given flows with multiple RTTs, we recommend
setting it close to the average RTT.

Finally, we discuss setting dma. for function f(¢) in Eq.(4). This
determines the magnitude of maximum update. If this value is very
small convergence to the proper range may be lengthy. However, an
extremely large value may result in overshooting followed by back-
tracking, and thus also exhibit poor convergence. Through experimen-
tation we found performance was best with a reasonable value, in the
0.1-0.3 range.

I11. SIMULATION RESULTS

We studied the effectiveness of MARS and compared its perfor-
mance to RED [6] and SCRED [4]. ns version 2 [17] was used to
run the simulations. A variety of scenarios were investigated including
single and multiple bottleneck links, similar and different RTTs, and
dynamically changing flow number. Here we present the results for a
dynamic case where the number of active flows abruptly changes from
80 to 40, using different RTTs and two bottleneck links.

Note that MARS’ performance was consistent for all cases, with-
out the need for any parameter reconfiguration. This was not true for
RED and SCRED. Their performance was dependent on the specific
network dynamics and highly sensitive to their parameter settings. It
was necessary to adjust the parameter values according to the different
scenarios. Here we present the best results that were obtained for RED
and SCRED.

The simulation topology is shown in fig. 4. Links are full duplex with
equal bandwidth in both directions. All are 100Mbps links except for
the two bottlenecks, link [n4-n5] at 45Mbs and link [n5-n6] at 10Mbs.
The link propagation delays vary from 1ms to 15ms, in increments of
5ms. The values for each are labeled in fig. 4. The maximum queue
size is 150 packets.

There are four source nodes, n0-n4, each with 20 TCP sources. There
are two sets of destination nodes. To reach the first set, n8-n11, flows
must traverse both bottleneck links. The second set, n12-n15, only
entails a single bottleneck link, [n4-n5]. Each source node divides its
TCP flows evenly between the two sets of destination nodes. The TCP
flows are all infinite ftp sources that adapt their sending rate according
to Reno [1].

The simulation is run for 160 seconds. 40 flows run for the entire du-
ration. The other 40 flows are turned on and off every 40 seconds. All



150 —

100

50

queue size (pk)

160
time (s)

Fig. 5. MARS Queue Performance (g* =50, interval=70ms

80 flows are started initially. We tested MARS, RED, and SCRED us-
ing the following parameter settings. For MARS, the target queue size
q*=50 and the update-interval=70ms. For RED, the maximum mark-
ing probability maxp=0.1, the minimum threshold minth=20, and the
maximum threshold maxth=80. Finally for SCRED, the minimum
threshold minth=20, the maximum threshold maxth=80, a=3, and
b=2. A high-level description of RED and SCRED is found in §IV.

The queue performance results for MARS, RED, and SCRED at the
first bottleneck link [n4-n5] are shown in figs. 5, 6 and 7, respec-
tively. For brevity, we omit results for the second bottleneck link, as
they present similar performance.

MARS delivers significantly more consistent and controlled behav-
ior than RED or SCRED. lt is able to stabilize the queue fluctuations
around the target. It reduces incidences of queue overflow and under-
flow. Performance is consistent regardless of the number of flows.

RED’s performance is less predictable and depends on the number
of active flows. The queue fluctuations are less controlled and result
in more underflow. As we shall see, RED must turn to packet loss to
control the queue size in the case of 80 flows.

The performance for SCRED is even less consistent than RED. The
queue grows larger and oscillates more irregularly in the case of 80
flows. Here, SCRED experience significant packet dropping and un-
derflow. However, the results for 40 flows are much better, with perfor-
mance similar to that of MARS. In this case, SCRED is able to stabilize
the oscillations and reduce both packet loss and underflow.

Comparing the marking probabilities helps explain the differences in
queue performance. In fig. 8, we see MARS achieves precise tuning of
the marking probability. It is able to adapt its magnitude to the correct
range and to stabilize the value. By matching the marking probability
to the flow dynamics, MARS can control the aggregate sending rate in
a stable manner.

RED’s marking probability fluctuates over the entire range, from
0..maxp, as seen in fig.9. There is very little difference between the
values used for 80 and 40 flows. Yet, as shown using MARS, the mark-
ing probabilities should operate in different ranges. In addition, RED
must rely on packet discard to control the queue in the case of 80 flows.
Dropped packets were logged with a marking probability of 1.0. In
the graphs, these can be seen as the vertical lines that shoot to the top.
Overall, RED introduces packet loss and fails to match the marking
probability with the flow dynamics.

SCRED is better than RED at matching the marking probability. Al-
though it’s value still fluctuates between 0..mazp, by adapting mazp,
it is able to bring the oscillations within the proper range. In the case
of 40 flows, the marking probability fluctuates in a range similar to
MARS. Yet, performance is much worse with 80 flows. Here, it fails
to stabilize maxp and introduces packet discard. The instability can
be attributed to the fact that SCRED fails to account for the impact of
packet loss on performance. This type of behavior is described in §l1-C.

We logged the average goodput for the 80 flows over the first 35

150

100

Queue size (pk)

Fig. 6. RED Queue Performance (maxp=0.1, minth=20, maxth=80)

Queue size (pkt)

M ’HWW .JiMiMl

time (s)

Fig. 7. SCRED Queue Performance (minth=20, maxth=80)

seconds of the simulation. The total average goodput plus bottleneck
link utilization and loss rate at n4-n5 for MARS, RED and SCRED
are summarized in table I. MARS outperformed the other schemes. It
achieved the highest goodput and utilization with the smallest loss rate.
Especially notable is its significantly smaller loss rate.

Overall, MARS delivered the most consistent and stable behavior.
By adapting the marking probability to stabilize the queue perfor-
mance, it was able to reduce both overflow and underflow. Unlike the
other schemes, MARS was able to control the queue size without re-
lying on packet discard. Hence, it delivered the highest goodput and
utilization with the lowest loss rate.

IV. RELATED WORK

This section provides a brief overview of several active queue man-
agement schemes designed to regulate TCP flows based on random
packet marking/dropping. Random Early Detection (RED) is the most
prominent and widely studied scheme today [6]. RED detects incoming
congestion based on monitoring the average queue length and uses ran-
dom packet marking which linearly increases in this average. However,
it uses a static linear function that limits the dynamic range over which
RED can adapt the marking probability. Therefore, it may need to rely
on packet discard to control the queue size. It is difficult to configure
RED to perform well under different scenarios. Its performance varies
depending upon the specific parameter settings and network dynamics.

Self-Configuring RED (SCRED) [4] is also based on a linear rela-
tion between average queue length and marking probability, but adap-

TABLEI
BOTTLENECK LINK PERFORMANCE (N4-N5)

loss rate utilization | goodput(Mb/s)
MARS 2.904 x 107 ¢ 0.9982 44,72
RED 1.064 x 10~ | 0.9631 41.93
SCRED | 1.021 x 102 0.9817 43.28




LS OLD

[=]

o

=

=

==

(31

£ o0.05 m
o T 1

160
time (s)

Fig. 8. MARS Marking Probability (¢g* =50, interval=70ms)

tively tunes its slope by adjusting the maximum marking probability
mazp. mazxp is adjusted whenever the estimated average queue size
is larger or smaller than the maximum or minimum threshold, respec-
tively. However, SCRED can only adjust the parameter with a coarse
granularity. Its performance is also sensitive to the other parameter set-
tings. Furthermore, SCRED can oscillate since its adaptation does not
account for the influence of packet loss, as evident in our simulation
results.

An alternate scheme, Stabilized RED (SRED) [13], calculates the
marking probability based on an estimate of the current number of ac-
tive flows using hit probability. However, the flow number estimation
is based on a noisy observation and is not always accurate, especially
when faced with a large number of active flows. As the number of flows
increases, the hit probability decreases and it is vulnerable to measure-
ment error. Further, its performance is based on a somewhat arbitrary
static three-step function and a maximum drop probability. SRED uses
the instantaneous queue. Simulations show that while SRED is able
to control the maximum queue size it experiences significant under-
flow[13].

A final scheme, BLUE [3], proposes increasing the marking prob-
ability p(t) by a constant when experiencing queue overflow, and de-
creasing p(t) by another constant when the queue is empty. BLUE is
the closest to our scheme in the sense that both are based on adaptively
tuning p(t) by observing the instantaneous queue. However, BLUE is
unable to stabilize queue fluctuations around a target. Further, it does
not properly scale the updates according to p(t). This presents a prob-
lem once p(t) is close to the proper range. Convergence is also an issue
since BLUE only updating p(t) when the queue reaches an extreme.
The simulation results in [3] show that with BLUE, p(t) takes an ex-
tremely long time to converge and the queue experiences periods of
oscillation between underflow and overflow, as described in §l1-C.

V. CONCLUSION AND FURTHER CONSIDERATIONS

This paper proposes MARS, a novel adaptive random marking ac-
tive queue management scheme. It uses a simple mechanism based on
a target queue size to adaptively tune the marking probability p(t) by
monitoring the instantaneous queue. The design includes proper scal-
ing of the updates to p(¢). It further accounts for the influence of packet
loss on the adaptation scheme.

Through simulation, we demonstrated MARS’ ability to control the
queue performance and dynamically adjust to the network dynamics,
including number of active flows and multiple bottleneck links. MARS
effectively stabilized queue fluctuations around the target value and re-
duced both queue overflow and underflow. It outperformed RED and
SCRED in terms of utilization, loss rate and goodput, and delivered the
most consistent behavior.

MARS has several additional benefits. Its computing overhead is
small, requiring only a few simple operations performed periodically.
MARS is easy to configure, only involving the setting of a few param-

o h.l‘h.‘.u L, n“ L H\.Jm.u A .‘.m‘hmu\ PRI o 119
o 80 160
time (s)

Fig. 9. RED Marking Probability (maxp=0.1, minth=20, maxth=80)

0
=

marking prob.

o
0
a

]
‘ [.LLJMM

time (s)

o

o

160

Fig. 10. SCRED Marking Probability (minth=20, maxth=80)

eters. It is fairly insensitive to their specific value as long as configured
in a reasonable range.

Several issues for further consideration remain. We are still investi-
gating a proper criteria for selecting a target queue size, ¢*. It may be
possible to design a mechanism to adaptively tune ¢* based on queue
variance. The variance might also be an effect mechanism in designing
a function f(x) that further ignores normal queue fluctuations. Finally,
while use of the instantaneous queue provides an effective mechanism
for adapting the marking probability, it may be possible to design an
alternate, equally as effective, scheme based on more stable measures,
such as g(t).

REFERENCES

[1] M. Allman, V. Paxson, “TCP Congestion Control,” IETF RFC 2581, April 1999.

[2] B. Braden, et al, “Recommendations on Queue Management and Congestion Avoidance in the Inter-
net,” IETF RFC 2309, April 1998.

[3] W. Feng, D. Kandlur, D. Saha, K. Shin, “BLUE: A New Class of Active Queue Management Algo-
rithms,” University of Michigan CSE-TR-387-99, April 1999.

[4] W. Feng, D. Kandlur, D. Saha, K. Shin, “A Self-Configuring RED Gateway,” IEEE INFOCOM’99.

[5] S.Floyd, “Connections with Multiple Congested Gateways | Packet-Switched Networks Part 1: One-
way Traffic,” Computer Communication Review, vol. 21, no. 5, October 1991.

[6] S. Floyd, V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,” IEEE/ACM
Transactions on Networking, August 1993.

[7] S. Floyd, “TCP and Explicit Congestion Notification,” Computer Communication Review, vol. 24,
no. 5, October 1994.

[8] V.Jacobson, “Congestion Avoidance and Control,” In Proceedings of ACM SIGCOMM, August 1988.

[9] C. Lefelhocz, B. Lyles, S. Shenker, L. Zhang, “Congestion Control for Best-Effort Service: Why We
Need a New Paradigm,” IEEE Network, Juauary/February 1996.

[10] D. Lin, R. Morris, “Dynamics of Random Early Detection,” In Proceedings of ACM SIGCOMM,
September 1997.

[11] M. Mathis, J. Semke, J. Mahdavi, “The Macroscopic Behavior of the TCP Congestion Avoidance
Algorithms,” Computer Communication Review, 27(3), July 1997.

[12] R. Morris, “Scalable TCP Congestion Control,” IEEE INFOCOM 2000.

[13] T. Ott, T. Lakshman, L. Wong, “SRED: Stabilized RED,” IEEE INFOCOM’99.

[14] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, “Modeling TCP Throughput: A Simple Model and its
Empirical Validation,” in Proceedings of ACM SIGCOMM, 1998.

[15] V. Paxson, “End-to-end Internet Packet Dynamics,” in Proc. Of ACM SIGCOMM, September 1997.

[16] K. Ramakrishnan, S. Floyd, “A Proposal to Add Explicit Congestion Notification (ECN) to IP”” IETF
RFC 2481, January 1999.

[17] “Network Simulator - ns version 2,” http://www-mash.cs.berkeley.edu/ns/, 1999.



